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1 Asymptotic Consistency of the Maximum Likelihood Es-
timator

1.1 Recap: Maximum likelihood estimation

Last time, we introduced maximum likelihood estimation. If our model is P with densities

pθ(x) with respect to µ and if our sample is X1, . . . , Xn
iid∼ pθ0 , then the maximum

likelihood estimator (MLE) is

θ̂n = arg max
θ∈Θ

pθ(X)

= arg max
θ∈Θ

`n(θ;X)

= arg max
θ∈Θ

n∑
i=1

`1(θ;Xi)− `1(θ0, Xi)︸ ︷︷ ︸
Wi(θ)

= arg max
θ∈Θ

Wn(θ),

where

Wn(θ) =
1

n

n∑
i=1

Wi(θ).

We are interested in how Wn converges to its expectation.
Last time, we made a quadratic expansion of the log-likelihood (or a linear expansion

of the score),
0 = ∇`n(θ̂n) = ∇`n(θ0) +∇2`(θ̃n)(θ̂n − θ0),

where θ̃n is some value given by the mean value theorem. Then

√
n(θ̂n − θ0) =

(
− 1

n
∇2`(θ̂n)

)−1( 1√
n
∇`n(θ0)

)
︸ ︷︷ ︸

=⇒ Nd(0,J1(θ0))

.
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We want to say that the first term converges in probability to J1(θ0)−1. We need a few
ingredients:

• θ̂n
p−→ θ0.

• J1(θ0) � 0.

• We need to deal with a random function at the random value θ̂n.

1.2 Pointwise convergence of likelihood ratio averages

We can say Wn(θ) is a sample mean of iid W1(θ), . . . ,Wn(θ). Recall the KL-Divergence

D
(1)
KL(θ0 || θ) = Eθ0

[
log

pθ0(X1)

pθ(X1)

]
.

Then by Jensen’s inequality,

−D(1)
KL(θ0 || θ) ≤ logEθ0

[
pθ0(X1)

pθ(X1)

]
≤ log 1

= 0.

Since log is strictly concave, this is a strict inequality unless pθ0 = pθ.
Now let’s calculate the expectation of the W s:

Eθ0 [Wn(θ)] = Eθ0 [Wi(θ)]

= Eθ0 [`1(θ;X1)− `1(θ0;Xi)]

= −DKL(θ0 || θ)
< 0,

unless pθ0 = p0. Then

Wn(θ)
p−→ −DKL(θ0 || θ) < 0

unless pθ0 = p0. We need a way to make this convergence uniform.

1.3 Uniform convergence of random functions

Definition 1.1. For a compact K, let C(K) be the set of all continuous functions f : K →
R.

Definition 1.2. For any f ∈ C(K), the L∞ norm is

‖f‖∞ = sup
t∈K
|f(t)|.
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Definition 1.3. We say that fn → f in this norm (fn converges uniformly to f) if
‖fn − f‖∞ → 0.

Theorem 1.1 (Law of large numbers for random functions). Assume K is comapct, and
W1,W2, · · · ∈ C(K) are iid with E[‖Wi‖∞] <∞. Let µ(t) = E[Wi(t)]. Then µ(t) ∈ C(K),
and ∥∥∥∥∥ 1

n

n∑
i=1

Wi − µ

∥∥∥∥∥
∞

p−→ 0.

That is, 1
n

∑n
i=1Wi → µ uniformly in probability.

We won’t prove this.

Theorem 1.2 (9.4 in Keener). Let G1, G2, . . . be random functions in C(K) with K

compact. Assume that ‖Gn − g‖∞
p−→ 0 for some fixed g ∈ C(K). Then

1. If tn
p−→ t∗ with tn random and t∗ ∈ K fixed, then Gn(tn)

p−→ g(t∗).

2. If g is maximized at a unique value t∗ ∈ K and Gn(tn) = maxtGn(t), then tn
p−→ t∗.

3. If K ⊆ R, g(t) = 0 has a unique solution t∗, and tn solves Gn(tn) = 0, then tn
p−→ t∗.

Proof.

1.

|Gn(tn)− g(t∗)| ≤ |Gn(tn)− g(t− n)|+ |g(tn)− g(t∗)|
≤ ‖Gn − g‖∞︸ ︷︷ ︸

p−→0

+ |g(tn)− g(t∗)|︸ ︷︷ ︸
p−→0

,

where the second term converges to 0 in probability by the continuous mapping
theorem. So Gn(tn)

p−→ g(t∗).

2. Fix ε > 0, and let Bε(t
∗) = {t : ‖t− t∗‖ < ε}. Let Kε = K \Bε(t∗); this intersection

is also compact. Let
δ = g(t∗)−max

t∈Kε

g(t) > 0.
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If tn ∈ Kε, then

Gn(tn) ≤ max
t∈Kε

g(t) + ‖Gn − g‖∞. = g(t∗)− δ + ‖Gn − g‖∞.

We also know that

Gn(tn) ≥ Gn(t∗) ≥ g(t∗)− ‖Gn − g‖∞.

Subtracting these inequalities gives

2‖Gn − g‖∞ ≥ δ.

The probability of this is going to 0 by assumption, so P(tn ∈ Kε)→ 0.

3. The proof of this is analogous to the proof of the second statement.

What if we don’t need the exact maximizer or if there is no exact maximizer? We can
modify part 2 of the theorem:

Theorem 1.3. Let G1, G2, . . . be random functions in C(K) with K compact. Assume

that ‖Gn − g‖∞
p−→ 0 for some fixed g ∈ C(K). Then if g is maximized at a unique value

t∗ ∈ K and Gn(tn) = maxtGn(t)− αn with αn → 0, then tn
p−→ t∗.

Proof. We can repeat the same argument, except this time we get

Fn(tn) ≥ Gn(t∗)− αn ≥ g(t∗)− ‖Gn − g‖∞ − αn.

This gives
2‖Gn − g‖∞ ≥ δ − αn,

and the proof still works.
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1.4 Consistency results for the MLE

Theorem 1.4 (Consistency of the MLE for compact Θ). Let X1, . . . , Xn
iid∼ pθ0, where P

has continuous densities pθ for θ ∈ Θ. Assume that

• Θ is compact,

• Eθ0 [‖Wi‖∞] = Eθ0 [‖`1(θ;Xi)− `1(θ0;Xi)‖∞] <∞,

• The model P is identifiable.

Then θ̂n
p−→ θ0 if θ̂n ∈ arg max `n(θ;X).

So it doesn’t matter which value we pick for the MLE; we still get consistency.

Proof. Since the densities are continuous, Wi ∈ C(Θ). They are iid with mean µ(θ) =
−DKL(θ0 || θ), where µ(θ0) = 0 and µ(θ) < 0 for all θ 6= θ0. So θ0 uniquely maximizes µ.

By definition, θ̂n maximizes Wn, so ‖Wn − µ‖∞
p−→ 0 by the law of large numbers. Now

apply the previous theorem.

Here is a way (but not the only way) to restrict our attention to a compact set.

Theorem 1.5 (Keener 9.11 with slightly stronger assumptions). Let X1, . . . , Xn
iid∼ pθ0,

where the model P has continuous densities pθ for θ ∈ Θ ⊆ Rd. Assume

• The model is identifiable.

• For all compact K ⊆ Rd, E[supθ∈K |Wi(θ|] <∞.

• There exists an r > 0 such that

E

[
sup

‖θ−θ0‖>r
Wi(θ)

]
< 0.

Then θ̂n
p−→ θ0 if θ̂n ∈ arg max `n(θ;X).

Proof. Let A = {θ : ‖θ − θ0‖ > r}, and let α = E[supθ∈AWi(θ)] < 0. Then

sup
θ∈A

Wn(θ) ≤ 1

n

n∑
i=1

sup
θ∈A

Wi(θ)→ α < 0.

So
P(θ̂n ∈ A) ≤ P(Wn(θ0) ≤ sup

θ∈A
Wn(θ))

0−→,

as α
p−→ 0 implies supθ∈AWn(θ)

p−→ 0. Now let

θ̂An = θ̂n1{θ̂n∈Ac} + θ01{θ̂n ∈ A}
p−→ θ0.

Then θ̂n
p−→ θ0.
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