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1 Asymptotic Consistency of the Maximum Likelihood Es-
timator

1.1 Recap: Maximum likelihood estimation

Last time, we introduced maximum likelihood estimation. If our model is P with densities
po(x) with respect to p and if our sample is Xi,..., X, i Doy, then the maximum

likelihood estimator (MLE) is

0, = arg max py (X)
0cO
= arg max £, (0; X)
0cO

= argmax Z ﬁl (9, Xz) — 61 (90, Xz)
be® T

W;(0)

= argmax W, (0),
0cO

where

We are interested in how W,, converges to its expectation.
Last time, we made a quadratic expansion of the log-likelihood (or a linear expansion

of the score), ~ R
0= Vi (0,) = Vi (00) + V2(0,) (0, — 6p),

where gn is some value given by the mean value theorem. Then

V(B — 09) = (—,}lv?f(@\n))_l (;ﬁwnwo)) .

— Nd(O,Jl (90))



We want to say that the first term converges in probability to Ji(fg)~'. We need a few
ingredients:

o é\n £> 90.
° J1(90) > 0.

e We need to deal with a random function at the random value é\n

1.2 Pointwise convergence of likelihood ratio averages

We can say W, (6) is a sample mean of iid W1 (6), ..., W, (#). Recall the KL-Divergence

p90(X1):|
po(X1)

D 1) = Eo, |l0g
Then by Jensen’s inequality,

(1) pGO(Xl):|
-D 0 0) < logE —_—
KL( 0 || ) = log iy, |:i;9(X1)

<log1l
=0.

Since log is strictly concave, this is a strict inequality unless pg, = py.
Now let’s calculate the expectation of the Wis:

Ego [Wn(0)] = Eqy [W;(0)]
= Eg, [€1(6; X1) — £1(00; Xi)]
= —Dxkr(0o || 0)
<0,

unless pg, = po. Then
Wa(0) 2 —Dyr, (60 || ) <0

unless pp, = po. We need a way to make this convergence uniform.

1.3 Uniform convergence of random functions

Definition 1.1. For a compact K, let C(K) be the set of all continuous functions f : K —
R.

Definition 1.2. For any f € C(K), the L™ norm is

[ fllso = sup | f(#)]-
teK

2



Definition 1.3. We say that f, — f in this norm (f, converges uniformly to f) if
[ = flloo = 0.

Theorem 1.1 (Law of large numbers for random functions). Assume K is comapct, and
Wi, Wa,--- € C(K) are tid with E[||W;||s] < 0o. Let p(t) = E[W;(t)]. Then u(t) € C(K),
and

o0

That is, £ 3" | W; — p uniformly in probability.
We won’t prove this.

Theorem 1.2 (9.4 in Keener). Let G1,Ga,... be random functions in C(K) with K
compact. Assume that |Gy, — gllso = 0 for some fived g € C(K). Then

1. If ty B t* with t, random and t* € K fized, then Gp(tn) 2 g(t*).

2. If g is mazimized at a unique value t* € K and Gy (t,) = max; Gy (t), then t, 2 t*.

3. If K CR, g(t) =0 has a unique solution t*, and t,, solves G,(t,) =0, then t, 2y g,
Proof.

1.

‘Gn(tn) - g(t*)’ < |Gn(tn) - g(t - n)’ + ’g(tn) - g(t*)‘
< IGn = glloo +|9(tn) — g(t7)],

N~

20 20

where the second term converges to 0 in probability by the continuous mapping
theorem. So G, (t,) 2 g(t*).

2. Fix e > 0, and let B.(t*) = {t : ||t —t*|| < ¢}. Let K. = K \ B(t*); this intersection
is also compact. Let

0 =g(t") —maxg(t) > 0.




If t, € K., then

Gn(tn) < maxg(t) +[|Gn — gllee- = g(t") — 0 + [|Gn — glloo-
We also know that

Gn(tn) = Gn(t) =2 g(t*) — [Gn — 9l
Subtracting these inequalities gives
2|Gn = glloo = 0.
The probability of this is going to 0 by assumption, so P(¢, € K.) — 0.
3. The proof of this is analogous to the proof of the second statement. O

What if we don’t need the exact maximizer or if there is no exact maximizer? We can
modify part 2 of the theorem:

Theorem 1.3. Let G1,Ga,... be random functions in C(K) with K compact. Assume
that ||Gr — 9llco 2,0 for some fized g € C(K). Then if g is mazimized at a unique value
t* € K and Gy, (t,) = max; G, (t) — o, with o, — 0, then t, LS

Proof. We can repeat the same argument, except this time we get
Fo(tn) > Gu(t") —an > g(t") = |Gn — glloc — an.

This gives
2||Gn - g”oo >0 — ap,

and the proof still works. O



1.4 Consistency results for the MLE
Theorem 1.4 (Consistency of the MLE for compact ©). Let Xi,..., X, id De,, where P
has continuous densities pg for 0 € ©. Assume that

e O is compact,

o Eoo[[Willoo] = Eg, [[1€1(8; Xs) — £1(00; Xi)[loo] < 00,

e The model P is identifiable.
Then é\n 2 0, if §n € argmax £, (0; X).

So it doesn’t matter which value we pick for the MLE; we still get consistency.
Proof. Since the densities are continuous, W; € C(©). They are iid with mean u(0) =
—Dx1.(6p || 0), where u(6p) = 0 and p(0) < 0 for all § # 6y. So 6y uniquely maximizes pu.

By definition, 6,, maximizes W, so |Wy — ptllso = 0 by the law of large numbers. Now
apply the previous theorem. ]

Here is a way (but not the only way) to restrict our attention to a compact set.

Theorem 1.5 (Keener 9.11 with slightly stronger assumptions). Let Xi,...,X, i Doy »

where the model P has continuous densities pg for 6 € © C R, Assume

e The model is identifiable.
e For all compact K C RY, E[supge g |[Wi(8]] < oo.

e There exists an r > 0 such that

E| sup W;(0)| <O0.
16—60]|>r

Then §n 2 0y if §n € arg max £,,(0; X).
Proof. Let A={0:|60 — 6|l > r}, and let o = E[supge4 W;(6)] < 0. Then

— 1
sup W, (0) < — Zsup Wi(0) - a < 0.

feA N oA
So R
P(f, € A) < P(W,(60) < sup Wa(6)) >,
fcA
as a 2 0 implies suppe 4 Wn(6) 2 0. Now let
O = 0015, caey +001{0n € A} 5 6.
Then §n LN O
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